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Computation of True Axial Rotation 

In this appendix, the orientation of an object will be denoted using  - indicating, in this 

instance, the orientation of the (H)umerus with respect to the (T)orso at time . Angular velocity of the 

humerus expressed in the coordinate system of the torso, at time , will be designated by . The 

longitudinal axis of the humerus expressed in the torso coordinate system, at time  will be denoted by 

. 

Miyazaki [1] defines true axial rotation at time , , as the integration of the projection of the 

angular velocity vector onto the longitudinal axis of the humerus: 

 
 (1) 

Both the angular velocity and the longitudinal axis of the humerus are expressed in the torso coordinate 

system in Equation (1), although this is not strictly necessary. They could both be expressed in the scapular 

coordinate system, although care must be taken that both quantities are expressed in the same 

coordinate system so the dot product between the two is valid. 

Equation (1) assumes a continuous time domain, but in motion capture recordings the time 

domain is discretized according to the capture frequency. In practice, true axial rotation can be computed 

via the trapezoidal rule. Let  compute the integral of the equally spaced sequence 

of numbers in  and let  denote the spacing between each number in the sequence. Then, 

true axial rotation can be computed numerically via: 

  (2) 

Equation (2) implies that . 

True axial rotation can also be computed from the finite helical axes representation. Let the 

rotation of the humerus from time  to time     be represented by a rotation 

about the unit vector  by an angle . Scaling  by , we obtain . 

Because the time between motion capture frames is typically small (e.g. 10 ms for 100 Hz),   is typically 

very small allowing us to treat  as an infinitesimal rotation. Infinitesimal rotations form a vector 

space [2], which permits us the ability to project  onto another axis of rotation using the dot product. 

Note that without the infinitesimal rotation assumption, the helical axes of rotation cannot be projected 

onto another axis of rotation by utilizing the dot product because 3D rotations do not form a vector space. 

The infinitesimal rotation assumption allows us to re-write true axial rotation in terms of the finite helical 

axes representation: 

 

 (3) 

Our analysis demonstrated that for all trials and all timepoints the difference in true axial rotation as 

computed via angular velocity versus finite helical axes was at most 0.18°. 
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Given the high capture frequency of most motion capture studies (>100 Hz), the infinitesimal 

rotation assumption should be well-justified. Out of an abundance of caution, however, we computed 

true axial rotation without the infinitesimal rotation assumption. This technique relies on the Swing-Twist 

method [3], which decomposes a rotation into two rotations whose axes of rotation are orthogonal to 

each other. The physical interpretation of the Swing-Twist and Swing-Spin [4, 5] (referenced in the main 

manuscript) methods are identical, however the Swing-Twist method is much more computationally 

efficient.  Let  represent a rotation about axis  by . Then, given a desired axis of rotation , the 

Swing-Twist method decomposes  as: 

  (4) 

In this decomposition,  and  is minimal. This decomposition is analogous to projecting a vector 

 onto a unit vector . For all trials and timeframes, there was no difference (to within 0.01 deg) between 

computing true axial rotation using finite helical axes and the Swing-Twist decomposition - indicating that 

the infinitesimal rotation assumption is well-justified. An implementation of each method of computing 

true axial rotation  and their comparison  can be found in the code repository associated with this 

manuscript. 
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